Advances in Thermoelastic Damping in Micro- and Nano- Mechanical Resonators: a Review
نویسندگان
چکیده
منابع مشابه
Thermoelastic damping in micro- and nanomechanical systems
The importance of thermoelastic damping as a fundamental dissipation mechanism for small-scale mechanical resonators is evaluated in light of recent efforts to design high-Q micrometerand nanometer-scale electromechanical systems. The equations of linear thermoelasticity are used to give a simple derivation for thermoelastic damping of small flexural vibrations in thin beams. It is shown that Z...
متن کاملNanoscience and Nano Engineering in Concrete Advances , A Review
This paper reviews some progressive studies and innovations in cement and concrete materials in nano field. Due to the widespread acceptance of the special properties of nano materials and using them for engineering concrete performance, understanding and directing their properties are not achievable without instructing concepts and investigating interactions among components. Due to ach...
متن کاملDamping and Frequency Shift in Microscale Modified Couple Stress Thermoelastic Plate Resonators
In this paper, the vibrations of thin plate in modified couple stress thermoelastic medium by using Kirchhoff- Love plate theory has been investigated. The governing equations of motion and heat conduction equation for Lord Shulman (L-S) [1] theory are written with the help of Kirchhoff- Love plate theory. The thermoelastic damping of micro-beam resonators is analyzed by using the normal mode a...
متن کاملGeometric effects on thermoelastic damping in MEMS resonators
The effects of geometry on the energy dissipation induced by thermoelastic damping in MEMS resonators are investigated numerically using a finite element formulation. The perturbation analysis is applied to derive a linear eigenvalue equation for the exponentially decaying rate of the mechanical oscillation. The analysis also involves a Fourier method that reduces the dimensionality of the prob...
متن کاملSuppression of thermoelastic damping in MEMS beam resonators by piezoresistivity
Microelectronic mechanical (MEM) beam resonators with high quality factors are always preferred in practical applications. As one of the damping sources, thermoelastic damping (TED) caused by irreversible heat flows is usually considered as an upper limit of the overall damping effect. A new method is proposed in this work to compensate TED by taking advantage of the piezoresistive effect. Such...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Solid Mechanics and Materials Engineering
سال: 2007
ISSN: 1880-9871
DOI: 10.1299/jmmp.1.18